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Abstract

In the Hough transform, a feature in an input space I votes for
parameters in a transform space P with which it is compatible. If it also
uses negative votes to vote against parameters with which it is
incompatible, background bias and'inherent noise in P can be reduced
and peaks sharpened.

In the usual Hough transform implementation, an array is used to
accumulate votes, raising the problem that the space requirement
increases exponentially with the number of parameters. Accumulation
in a fixed-size content-addressable cache (or hash table) may provide a
solution.
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1. Definitions, Problems, Solutions

1.1 Hough Transform as Voting and Imaging

Considered as a voting process, the Hough transform maps features of a
phenomenon in an input space I to sets of votes in the parameter space P. The
parameter vectors receiving the most votes describe instances of the phenomenon
explaining the most evidence. Ideally, the Hough transform maps a phenomenon
into a set of votes that is a delta function in parameter space: the votes are
unanimous. Usually the votes are more or less spread out, since several phenomena
might generate a feature. Call the pattern of votes arising from a feature its feature
point spread function (fps), and the superposition of all fpsfs from a phenomenon its
parameter point spread function (ppsf) [Brown 1982]. A ppsf usually consists of a peak
of votes at the correct parameter vector surrounded by sidelobes of incorrect votes
(Fig. la).

1.2 Inherent Noise and Bias? Complementary Hough

Problem: When the input space contains multiple instances close together,
sidelobes from one instance can overlap the peak from another, adding both
variation and bias to the peak height. Even in single-instance noiseless inputs, the
near-peak votes can spread the peak. Solution: In the Complementary Hough
transform, the fpsf contains (negative) votes against parameters with which the
feature is inconsistent, as well as (positive) votes for parameters with which it is
consistent. The negative votes can cancel off-peak positive votes (Fig. lb).
Complementary Hough sharpens peaks and reduces sidelobe bias and variance.

1.2 Space Efficiency? Cache Hough

Problem: Multi-dimensional quantized parameter spaces are most
straightforwardly implemented as arrays which grow impractically large as their
dimension (the number of parameters) increases. Solutions: One solution is the use
of dynamically quantized parameter space [O'Rourke 1981; Sloan 1981]. The solution

. explored here is Cache Hough: Accumulate vote tallies in a content-addressable
cache (in hardware) or hash table (in software) [Brown and Sher 1982a; 1982b]. The
abstract problem is that of estimating the mode(s) of a distribution using fixed
memory. Cache Hough is a promising technique suitable for hardware
implementation.

3. Results: Synthetic Data

3.1 Complementary Hough Performance

What fpsf for complementary Hough maximizes peak detectability and
minimizes bias? All the results of this section arise from synthesized versions of
circle detection for a constant radius, but the results are suggestive of general
principles. In every case, the circumferential feature points in the input "image"
contain no directional information; it is as if they were generated by a rotationally
symmetric feature detector. This means that the fpsf in the regular Hough parameter
space of circle centers is a complete circle of unit weight votes (each edge feature
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votes for a set of centers at all locations a radius distance away). The fpsfs forcomplementary Hough are circles of unit-weight votes with neighboring concentric
circles of negative votes. The first graph (Fig. 2) documents the search for the best
complementary Hough fpsf. The data points correspond to fpsfs with the indicated
negative surrounds. The fpsf with a circle of ones surrounded on both sides by -
1/2's was used for all the remaining work reported in this section.

The graphs of Figs. 3 - 9 document regular Hough and complementary Hough
performance in seven different imaging situations, getting progressively more
complex and noisy. As expected, complementary Hough can keep the mean
background near zero, with small biases magnified by the contributions of many
noise features (Fig. 3). Ideally, peak height is proportional to amount of evidence;
complementary Hough achieve this (Fig. 4). Three signal-to-noise ratios are shown
(Figs. 5 - 7), with complementary Hough comparing well in all three. SNR2 (F1g. 6)
is meant to indicate the detectability of the peak by usual histogram peak-finders,
while SNR3 indicates detectability by global thresholding (it is a multiple-instance
version of the measure used below to quantify performance of cache Hough (Section
3.2)). Figs. 8 and 9 also show how reliably the peaks at true parameter vectors are
distinguished from background by simple threshold detection.

3.2 Cache Hough Performance

We created synthetic phenomenon instances of controllable size, number, and
location, embedded them in controllable amounts of noise features, and scanned the
resulting images in several ways. Each time a feature was encountered, a vote burst
(fpsf) of controllable size was emitted sequentially into a cache whose length and
cache-flushing strategy were were also controllable. The hope is that the parameter
vector corresponding to the instance survives in the cache and accumulates the most
votes. For technical details see [Brown and Sher 1982b]. Comprehensive results
appear in [Brown and Sher 1982a].

Fig. 10 shows two synthetic images. Fig. 11 shows the arrangement of fpsfs and
the resulting ppsfs in parameter space. Their form is dictated by theory in [Brown
19821. The size of the instances and psfs and number of noise features in the image
determine how many votes are sent to the cache. The scanning methods determine
the order of sending. The cache length and flushing algorithm determine what vote
tallies survive. We used four cache lengths (32, 64, 128, infinite). The infinite cache
is equivalent to an accumulator array. Our instances had horizontal extent of 1, 2, or
3 and vertical extent of 11. The fpsfs were of 3, 9, and 15 votes. There was only one
instance per image. Regular and Complementary Hough were used. Images were
scanned five ways (Left to Right within Top to Bottom, Top to Bottom within Left to
Right, Random with Replacement, Random without Replacement, and Left to Right
within Random Scanline). One flushing method eliminated tallies below a threshold,
the other eliminated a fixed fraction of tallies, chosen at random, below a larger
threshold.

The results of these experiments yielded statistics such as the histograms of Figs.
12 and 13, which display a ratio
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(votes for parameter vector describing instance)
S N R 3 ------------------------------------------------------------------

max (votes for other vectors in cache)

If SNR3 > 1, the correct parameter vector tallied a plurality of votes and would be
detected as the largest entry in the cache. Otherwise, an incorrect parameter tallied at
least as many (see also Fig. 7).

4. Results: Real Data

Our Hough Transform software laboratory allows flexible experimentation and
comparison between methods. The cache accumulator module can be parameterized
to provide finite or "infinite" length and various flushing methods. Sample output is
shown in Fig. 14 and Table 1.

5. Discussion

Complementary Hough reduces inherent noise and bias and sharpens peaks at
the cost of increased voting effort, depending on the implementation. In a naive
implementation the cost might be strictly proportional to the number of votes, but in
a connectionist implementation with hard-wired voting patterns there is no extra cost
[Feldman and Ballard 1982].. Antialiasing is of some benefit, but also may affect
voting cost.

Complementary Hough is most effective with dense voting that maximizes the
superimposition of cancelling votes. If evidence is sparse, fpsfs and votes are sparse
in the accumulator and little cancellation takes place; similarly if fpsfs are sparse. In
the example of Section 4, positive votes occur in lines through 3-space, and each
positive vote is surrounded by only six (of a possible 24 in 3-D) nearest-neighbor
negative votes, resulting in less than optimal cancellation. If each feature votes for
exactly one parameter vector (the fpsf is a single point), then complementary Hough
degenerates to a linear enhancement operation: a central positive vote surrounded by
a cloud of complementary ones is like a Laplacian operator.

In complementary Hough, sidelobes should cancel while the central peak
accumulates positive votes. Feature perturbation error arises from quantization
effects [Shapiro and laninno 1979]; e.g., the angle computed for an edge element is
only approximate. Such error spreads the locus of the peak and superimposes
complementary votes on it, degrading complementary Hough performance. Table .1
shows substantial feature perturbation in the angle of edge elements. Thus the results
of Section 4 represent a severe test for the complementary Hough, and it is gratifying
that it performs slightly better than regular Hough.

The remainder of the discussion concerns cache Hough. I-inite caches of
adequate size seem to be practical Hough accumulators, not significantly worse than
accumulator arrays. The tables and histograms show a graceful and qualitatively
predictable degradation of performance as noise and fpsf length increase and cache
length decreases. Cache lengths of a few percent of the total number of votes seem
adequate, but we do not yet know how this figure grows with parameter
dimensionality.
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The random (with replacement) scan was uniformly significantly worse in all
cases than other methods. The random (without replacement) does not seem
significantly better than nonrandom scans. Even in 30% noise, the Top to Bottom
within Left to Right scanning method was not better than the Left to Right within
Top to Bottom. This indicates (with our vertical instances) that successive bursts of
votes (fpsfs) containing votes for the "true parameters" are not enough to help the
peak establish itself. Probably the noise that arrives before the instance and the flush
algorithm dominate the peak-establishment process. Thus the results are fairly
insensitive to scanning method, as long as each input space point is considered once.

In good conditions (short fpsf, low noise, large instances), average cache
complementary Hough performance is reliably markedly better than cache regular
Hough. However, as conditions get worse, their average performance is
approximately the same. Several of the histograms show a significant bimodality with
one peak at 0. This indicates that the "true peak" never gets established in a
significant number of cases, and that some pre-processing might help dramatically in
establishing peaks. One idea is "pair Houghing," in which only parameter vectors
that appear in two fpsfs are allowed into the cache. Clearly without such
preprocessing the issue is whether peaks are able to survive in the cache, and this
depends to a large extent on the Flush algorithm. The Random Below Threshold
Flush makes for a significant improvement in (mean peak)/(maximum background)
ratio, and reduces the frequency of occasions on which the correct parameters end up
with zero vote weight.

Systematic distortion, occlusion, and feature perturbation pose thorny problems
for cache Hough. An important topic of current work is to assess the performance of
cache Hough schemes in more stringent noise conditions and to develop means of
improving such performance.

Hierarchical caches can incorporate a form of "geometric locality" that is lost in
simple content-addressable caches. Natural flush algorithms for a single-level cache
are based strictly on tallies. Multiple caches in a resolution pyramid, maintained in
parallel, can be used to restrict flushing to coherent localities in the input space. This
idea is another topic of current research.
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Figure Captions

Figure 1. (a) Plot of the ppsf for regular Hough circle location. Circle radius 22,
peak height = 156, average sidelobe = 3.88, sidelobe variance = 9.84. (b) Ppsf
arising from complementary fpsfs consisting of a ring of l's surrounded both inside
and out by a ring of -'s. Peak height = 156, average sidelobe = .26, sidelobe
variance = 4.41.

Figure 2. The numbers beside the data points are the mean sidelobe (off-peak value)
of the ppsf. The ordinate, called here SNR2, is a signal/noise ratio defined by the
local peak height (its absolute height minus the height of its nearest neighbors)
divided by the standard deviation of the sidelobe (non-peak) heights. I[he regular
Hough voting pattern for circle detection yields the leftmost data point. Its local vote
weight cross-section (a single 1) is shown below it. '[he "jagged" and "smooth" data
points refer to the idea of anti-aliasing the fpsfs (in the computer graphics sense). In
smooth voting, votes are put in a cell in amount proportional to the amount of fpsf
passing through the cell. In regular Hough, this multiplies the number of votes and
makes for a higher peak and proportionally higher mean background. The other data
points represent more complicated fpsfs. The fourth, for example, is a circle of l's
and an inner circle of -l's. The second from the right is a circle of l's surrounded by
circles of -1/2's.

Figure 3. Mean background. Figs 3-9 show complementary Hough performance in
seven synthetic imaging situations, getting progressively more complex and noisy. Six
ensembles, each of ten synthetic images, were analysed to yield each data point but
the first, which is a baseline case arising from a single-instance (noiseless) image. In
each of the images in an ensemble, five shape instances and some noise features
appear. The images in an ensemble randomly differed in the placement of the
instances and noise points. The six ensembles systematically differed in the
percentage of the instance features visible in the image (100, 75, 50, and 25%) and in
the percentage of noise features in the image (0, 15, and 30% of the image features).
The last two ensembles are similar except the multiple features were closer together
in the "Dense" ensemble. Where they appear, variation bars encompass one standard
deviation and are representative of other data point variations.

Figure 4. Fidelity. This is measured by the peak height normalized by how much
image evidence contributes to it. Ideally this measure stays constant.

Figure 5. SNR1. The raw (absolute) peak height divided by the standard deviation
of off-peak heights.

Figure 6. SNR2. SNR2 is the local peak height (its height above its neighbors)
Udivided by the standard deviation of off-peak heights. SNR2 is often a better

measure of peak detectability than SNRl.

Figure 7. SNR3. SNR3 measures peak detectability when simple thresholding is the
detection criterion. SNR3 is the average peak height divided by the maximum off-
peak height. This is a multiple-instance version of the measure used for the cache-
based Hough study of Section 3.2.
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Figure 8. No False Negatives. This shows how many parameter vectors received at
least as many votes as the true peaks. Equivalently, how many wrong peaks are
detected by a simple thresholding strategy that sets its threshold just low enough to
include all the true peaks.

Figure 9. No False Positives. This shows how many true peaks have more votes than
all non-peak vectors. Equivalently, how many of the true peaks are detected by a
simple thresholding strategy that sets its threshold just high enough to exclude all
non-peak vectors.

Figure 10. (a) Two 18-feature, two-part instances in a 20x20 abstract image. (b)The
instances of (a) with 15% signal-independent noise.

Figure 11. (a) The features produce straight lines of votes in parameter space
yielding a rosette-like ppsf, as suggested by an analytic model [Brown 1982]. I'or
complementary Hough, lines of positive votes (weight 2) are flanked by negative
votes (weight -1). (b) Ppsfs for 13-feature regular Hough and Complementary
Hough.

Figure 12. Performance varying with cache length and complementary Hough. I-or
regular Hough, the mean number of votes per run was 639 and the histogram
records 100 runs. For complementary Hough, there were twenty runs and the mean
number of votes was 1917.

Figure 13. Performance varying with flushing algorithm. With 30% noise, the mean
number of votes cast per run is 1179.

Figure 14. (a) An input image. (b) A projection of the 3-D Hough and
complementary Hough accumulator arrays with parameters of circle location and
radius. (c) The ten circles with the most votes with regular Hough. (d) As in (c) with
complementary Hough.
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TABLE 1

Statistics for NORMAL HOUGH:
Results for circles in order S

Rank Radius CenterX CenterY Angle Diff Support

0 14 154 97 0.22 220.05
1 14 115 98 0.16 216.92
2 14 114 58 0.16 238.09
3 14 153 58 0.24 210.71
4 11 154 100 0.27 193.63
5 17 155 94 0.19 184.54
6 14 159 235 0.15 262.88
7 11 113 100 0.34 134.79
8 8 114 64 0.53 126.77
9 17 115 95 0.20 164.39

Avg: 0.25 195.28

Statistics for COMPLEMENT HOUGH:
Results for circles in order

Rank Radius CenterX CenterY Angle Diff Support

0 14 154 97 0.22 220.05
1 14 115 98 0.16 216.92
2 14 114 58 0.16 238.09
3 11 154 100 0.27 193.63
4 14 153 58 0.24 210.71
5 17 155 94 0.19 184.54
6 14 159 235 0.15 262.88
7 8 114 64 0.53 126.77
8 11 113 100 0.34 134.79
9 14 120 235 0.21 190.24

Avg: 0.25 197.86

TABLE 1. The radii, location, and rank ordering by votes of multiple circle
instances. Also their support in the image, measured by comparing the expected
edges in the instance to the real edges found by a Sobel edge detector in the image at
the corresponding points. Angle difference is the average angle between the expectedand actual edges, weighted by actual edge strength. Support is the average edgestrength for edges within PI/10 of the expected angle.

9 ,
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